Valence State and Interaction of Platinum and Germanium on γ-Al₂O₃ Investigated by X-Ray Photoelectron Spectroscopy

R. BOUWMAN AND P. BILOEN

Koninklijke/Shell-Laboratorium, (Shell Research B.V.), Amsterdam, The Netherlands

Received July 1, 1976; revised February 10, 1977

An X-ray photoelectron spectroscopic study of the reducibility of $Pt/\gamma-Al_2O_3$, $Ge/\gamma-Al_2O_3$, and Pt, $Ge/\gamma-Al_2O_3$ systems has shown that: (i) treatment with H_2 at temperatures up to 650°C leads to interaction between Pt and Ge, giving rise to the formation of Pt-Ge alloys; (ii) in the absence of platinum, germanium is difficult to reduce and at 650°C seems to dissolve in the alumina matrix whereas in the presence of platinum, it remains in a exposed state. The results strongly suggest that in both $Pt/\gamma-Al_2O_3$ and Pt, $Ge/\gamma-Al_2O_3$ "platinum atoms" are present in an electron-deficient state.

INTRODUCTION

A group of well-established catalyst systems that are of practical importance for various hydrocarbon conversions is formed by platinum, either as such or in combination with at least one other element placed in a highly dispersed state on high-surfacearea supports, e.g., γ -Al₂O₃. Although catalysts of this type have been used for several decades, relatively little is known about the nature of the platinum and the other component(s), if present, on the support. A major problem with these catalysts is the high degree of dispersion, which makes them "invisible" for electron microscopy and X-ray diffraction.

The advent of new surface-sensitive techniques such as electron spectroscopy (AES,¹ XPS, or ESCA), secondary ion mass spectrometry and ion scattering, has made it possible to study several fundamental aspects of such systems. Some catalytically interesting examples as studied by XPS are the oxidation state of Ir on oxidic supports (1), the dispersion of Rh on coal (2), and the reducibility of supported tungsten oxides (3) and molybdenum oxides (4). In the present study we apply XPS to two systems of interest to hydrocarbon conversions, viz, Pt on γ -Al₂O₃ and Pt,Ge on γ -Al₂O₃, with the aim of answering the following two questions: (1) What is the valence state of platinum in its active ("reduced") form? (2) Is there any interaction between Pt and Ge and if so what is its nature?

EXPERIMENTAL METHODS

1. Preparation of Specimens

The Pt/ γ -Al₂O₃ sample was prepared by impregnating γ -Al₂O₃ containing about 1%wt of chlorine with an aqueous solution of 24.8 mg Pt (as H₂PtCl₆)/ml, drying the mixture at 150°C and calcining it in air at 525°C. The resultant preparation contained about 3.8 g Pt/100 g Al₂O₃.

The Pt,Ge/ γ -Al₂O₃ sample was prepared by dissolving elemental germanium in

 $^{^{1}}$ AES = Auger electron spectroscopy; XPS = Xray photoelectron spectroscopy; ESCA = electron spectroscopy for chemical analysis.

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

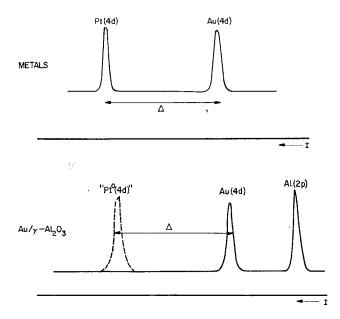


FIG. 1. Schematic view of the determination of the virtual zerovalent plantinum-4d line position on γ -Al₂O₃.

chlorine-saturated water, adding H₂PtCl₆, impregnating the γ -Al₂O₃ with it, drying the system at 150°C and calcining it at 525°C. The product contained 3.8 g Pt and 2.5 g Ge/100 g Al₂O₃.

A system containing $2.5 \text{ g Ge}/100 \text{ g Al}_2\text{O}_3$ was prepared in a similar way.

2. XPS Experiments

The above preparations, in finely divided form, were pressed into the grooves of cylindrical nickel specimen holders adapted to fit the sample introduction system of a Varian IEE-15 spectrometer. The spectrometer was equipped with an $MgK\alpha$ $(h\nu = 1253.6 \text{ eV})$ anode. Spectra of the catalysts were taken after calcination and after reduction at 450, 550, and 650°C for 1 hr at each temperature. Reduction was carried out in flowing hydrogen at a pressure of 1 bar (10⁵ N m⁻²), purified by diffusion through an Ag-Pd thimble. The specimen could be transferred from the treatment site to the analyzer chamber of the spectrometer without exposure to the atmosphere. The vacuum in the analyzer chamber was 5×10^{-7} Torr (1 Torr = 133.3 N m⁻²).

In order to check whether reoxidation of either of the constituents would take place during the measurements, we admitted 2×10^{-4} Torr hydrogen to the sample in the spectrometer in a number of cases. As we found no significant differences be-

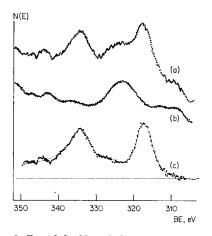


FIG. 2. Pt. 4d doublet of the 3.8% wt Pt/ γ -Al₂O₃ catalyst, C 1s set at 284.6 eV. (a) Spectrum of the catalyst calcined at 525°C; (b) spectrum of γ -Al₂O₃ calcined at 525°C; (c) = (a) - (b).

Temp (°C)		Pt 4d;	Ge 3 <i>d</i>	Cl $2p$	Al 2s	0 1s	
3.8% wt Pt/ γ -Al ₂ O ₃							
Calcined	525	317.0			118.9	531.0	
Hydrogen-treated	450	314.8	—		118.8	530.8	
	550	315.1			119.0	530.9	
	650	314.6	—		118.9	530.9	
2.5% wt Ge/ γ -Al ₂ O	3						
Calcined	525		32.2	199.7	119.1	531.1	
Hydrogen-treated	450		32.5	199.6	118.9	530.9	
	550		32.6	199.7	119.1	531.	
	650			199.2	118.9	531.0	
3.8% wt Pt + $2.5%$, wt Ge/ γ -Al ₂ O ₃						
Calcined	525	316.7	33.3	200.1	119.2	531.	
Hydrogen-treated	450	315.5	32.6	199.8	119.0	530.9	
	550	315.6	32.7/31.3	199.7	118.9	531.	
	650	315.1	31.4/29.7	199.5	119.0	531.	

TABLE 1

Line Positions of the Experimental Pt/Al₂O₃, Ge/Al₂O₃ and Pt,Ge/Al₂O₃ Catalysts^a

^a C 1s = 284.6 eV.

tween the results obtained with and without hydrogen ballast, we believe that the samples remained relatively unaffected in the spectrometer.

The Pt 4d, Ge 3d, Al 2s, O 1s, and Cl 2pphotolines were monitored. The strongest photoline of platinum, the Pt 4f doublet, could not be monitored because of its overlap with the Al 2p photoline from Al_2O_3 . Repetitive and sequential scans were made of the five mentioned photolines over scans widths sufficiently large to make the proper background corrections. Contributions of the γ -Al₂O₃ to the spectra were subtracted after measurement of spectra of γ -Al₂O₃ treated in the same way as the experimental catalysts. This procedure was of particular importance for a precise determination of the Pt 4d and Ge 3d photoline positions and intensities.

A number of reference systems were analyzed to provide the background information necessary for the interpretation of the spectra of the catalysts. Typical reference systems are GeO₂, Ge, PtO₂, Pt, H_2PtCl_6 , Na₂PtCl₄, and a bulk PtGe alloy. A special reference system consisting of γ -Al₂O₃ containing 0.1 monolayer of gold evaporated on top of it, was studied before and after the reduction steps as described above. This experiment served to determine the virtual line position of atomically dispersed platinum in the zerovalent state on the support. The procedure (see Discussion) consisted in measuring the Au $4d_{i}$ -Al 2p line distance of the above system and the Au $4d_{i}$ -Pt $4d_{i}$ line distance from the pure metals in electrical contact with each other (cf. Fig. 1).

RESULTS

The results are given under two subheadings, viz, line positions (binding energies), which provide information on (changes in) the oxidation state of the elements (Pt, Ge), and line intensities, which in principle provide information on agglomeration of the catalytic constituents or dissolution thereof in the carrier.

Reference Systems ^a				
System	BE (eV)	∆BE ^b	ΔBE ^c	
Metal	314.1	0		
PtO ₂	318.0	3.9		
H_2PtCl_6	317.5	3.4		
Na ₂ PtCl ₄	316.7	2.6		
PtGe _{0.72} alloy	315.5	1.4		
" Pt^{0} "/ γ – Al ₂ O ₃	313.5	-0.6	0	
Pt/Al ₂ O ₃				
Calcined, 525°C	317.0	2.9	3.5	
Hydrogen-treated, $650^{\circ}C$	314.6	0.5	1.1	
Pt, Ge/Al ₂ O ₃				
Calcined, 525°C	316.7	2.6	3.2	
Hydrogen-treated, 650°C	315.1	1.0	1.6	

 TABLE 2

 Pt 4d₁ Line Positions for Some

^a C 1s = 284.6 eV.

^b Reference: platinum metal.

^c Reference: "Pt^{0"}/ γ - Al₂O₃, which is obtained by measurement of the (Au-Pt)_{bulk}4d_j distance and measurement of the Au 4d_j line position of 0.1 monolayer gold on top of γ - Al₂O₃.

1. Line Positions

Metal line positions were determined by precise subtraction of the γ -Al₂O₃ spectrum from the metal/ γ -Al₂O₃ spectrum. An example of this procedure for the Pt 4*d* doublet is given in Fig. 2. All other spectra shown in this paper are smoothed spectra of comparable counting statistics, derived in the same way as the bottom spectrum shown in Fig. 2.

Table 1 gives the line position for the experimental Pt/Al_2O_3 , Ge/Al_2O_3 , and $Pt,Ge/Al_2O_3$ preparations. Values of line positions for the various reference systems are given in Tables 2 and 3. Unless stated otherwise, all line positions are referred to C 1s = 284.6 eV. The C 1s reference is a useful one for these systems, judging from the almost invariant position of the Al 2s photolines for the various samples after different treatments (Table 1).

a. Platinum. With Pt/Al_2O_3 , the observed chemical shift, ΔBE , for the Pt 4d₄ photo-

line upon hydrogen treatment at 650°C is 2.4 eV against only 1.6 eV with the Pt,Ge/ Al₂O₃ system (Tables 2 and 3). Both ΔBE values are lower than those for PtO_2 and H_2PtCl_6 with respect to platinum metal. The Pt $4d_{\frac{1}{2}}$ line position after hydrogen treatment at 650°C is 0.5 eV higher than in platinum metal. A comparison between the Pt $4d_{\frac{5}{2}}$ line positions of the hydrogentreated Pt/Al₂O₃ system and of platinum in the virtual zerovalent state as it is atomically dispersed on γ -Al₂O₃ ("Pt⁰"/ γ -Al₂O₃, as determined from the gold experiment) also yields a higher binding energy for the $4d_{\frac{1}{2}}$ electrons of platinum in the Pt/Al_2O_3 catalyst (Table 2).

Platinum in Pt,Ge/Al₂O₃, after hydrogen treatment at 650°C, is characterized by an even higher Pt $4d_{\frac{1}{2}}$ binding energy than platinum in Pt/Al₂O₃ (Table 2). It is noteworthy that the Pt $4d_{\frac{1}{2}}$ photoline of the bulk PtGe_{0.72} alloy also appears at a higher binding energy (Table 2).

b. Germanium. For Ge/Al_2O_3 , the Ge 3d photoline remains essentially unaffected upon hydrogen treatment up to a temperature of 550°C. It vanishes (or broadens extensively) after treatment at 650°C (Fig. 3).

TABLE 3

Ge 3d Line Positions for Some Reference Systems^a

System	Be (eV)	
GeO ₂	32.6	
Ge	29.7	
PtGe _{0.72}		
Oxidized	34.1	
Hydrogen-treated, $650^{\circ}C$	30.0	
Ge/Al ₂ O ₃		
Calcined	32.2	
Hydrogen-treated, $650^{\circ}C$		
Pt, Ge/Al ₂ O ₃		
Calcined	33.3	
Hydrogen-treated, 650°C	31.4/29.7	

 a C 1s = 284.6 eV.

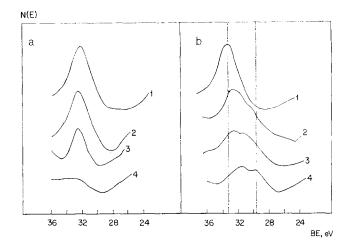


FIG. 3. Line positions of the Ge 3*d* photoline for Ge/Al₂O₃ (a) and Pt,Ge/Al₂O₃ (b) (reference: C 1s = 284.6 eV). (1) Calcined, 525°C; (2) hydrogen-treated, 450°C; (3) hydrogen-treated, 550°C; (4) hydrogen-treated, 650°C.

The situation is quite different from that for Pt,Ge/Al₂O₃. At 550°C, a Ge 3*d* doublet develops, which is shifted by about 1.5 eV to lower binding energy after hydrogen treatment at 650°C.

A comparison with Ge 3d reference photoline values (Table 3) would suggest that germanium in the Ge/Al₂O₃ system remains in the tetravalent state.

The situation for Pt, Ge/Al_2O_3 is more intricate. Intermediate oxidation states (Ge^{2+}) are probably formed upon treatment with hydrogen.

2. Line Intensities

Table 4 lists the relative intensities of the Ge 3d, Pt $4d_{(\frac{5}{2}+\frac{3}{2})}$ and Cl 2p photolines.

Upon hydrogen treatment, the Pt 4d and Ge 3d lines decrease in intensity. A detailed analysis of the photolines (Fig. 3) would suggest that the large decrease in intensity of the Ge 3d line in the Ge/Al₂O₃ system is due to extensive line broadening. This probably reflects the formation of a range of ill-defined germanium compounds. The Pt 4d lines, however, remain sharp. Their decrease in intensity is thus to be ascribed either to agglomeration or to diffusion into the carrier.

There is a small decrease in chlorine content upon hydrogen treatment, as follows from the Cl/Al intensity ratio. In each of the treatment stages the chlorine content of the $Pt_{0}Ge/Al_{2}O_{3}$ preparation is

TABLE	4
-------	---

System : Intensity ratios : Treatment (°C)	Pt/Al ₂ O ₃ Pt/Al	Ge/Al ₂ O ₅		$\mathrm{Pt,Ge/Al_2O_3}$			
		Ge/Al	Cl/Al	Pt/Al	Ge/Al	Pt/Ge	Cl/Al
Calcined, 525	0.29	0.048	0.098	0.23	0.050	4.5	0.107
Hydrogen-treated, 450	0.22	0.043	0.087	0.18	0.053	3.3	0.093
550	0.18	0.030	0.079	0.17	0.042	4.0	0.087
650	0.17		0.076	0.16	0.030	5.3	0.078

^a Al = Al 2s; Pt = Pt($4d_{\frac{1}{2}} + 4d_{\frac{1}{2}}$); Ge = Ge 3d, Cl = Cl 2p.

slightly higher than that of the Ge/Al_2O_3 system.

DISCUSSION

The differences between the monometallic Pt/Al_2O_3 and Ge/Al_2O_3 system, on the one hand, and the bimetallic $Pt,Ge/Al_2O_3$ system, on the other, are remarkable with respect to both intensity and position of the photolines before and after treament.

As regards the germanium photoline intensity (cf. Table 4), the following remarks can be made. In the presence of platinum, we observe only a moderate decrease of the Ge 3d signal. In the absence of platinum the signal virtually disappears. The loss in intensity can be explained either by excessive agglomeration into large particles or by compound formation with γ -Al₂O₃. X-Ray diffraction measurements carried out on this system failed to demonstrate the presence of crystalline Ge or Ge oxide species. Thus, we either deal with large amorphous Ge (oxide) lumps or with Ge- γ -Al₂O₃ compounds.

As to the Pt 4d photoline intensities, we note that for the Pt/Al₂O₃ system, we observe a decrease of the Pt 4d signal intensity of about 40%, as against 30% in the bimetallic system. X-Ray diffraction work proved that no agglomeration takes place under the prevailing conditions, which would, therefore, also point to a migration of (some of) the platinum to less exposed sites of the catalyst. Additional evidence to this effect is presented below.

Before discussing the implications of the observed line positions of platinum and germanium, we should point out that caution is necessary in deriving conclusions about the oxidation state of elements from their line positions, because the elements are present in a highly dispersed state on a foreign matrix (γ -Al₂O₃). When studying binding energies of core electrons of a specific atom, we must bear in mind that it is not only the "oxidation state" of that

atom, but also some properties of the surrounding matrix which will affect the measured line position. In this context specific reference is made to the extra-atomic relaxation [polarizability (5)] and the local Madelung potential (6).

Our experiment with the 0.1 monolayer gold on top of γ -Al₂O₃ (cf. Fig. 1) was designed to circumvent the above complications. The following assumptions underlie our approach:

1. Gold if oxidized, is easily reduced to the metallic state.

2. Isolated gold and platinum atoms on γ -Al₂O₃ are subject to comparable extraatomic relaxation effects.

3. With gold one measures a surface Madelung potential averaged over different surface sites.

The first assumption is strongly supported by numerous reports on the inertness of gold to the gases prevailing in a high-vacuum system. The second assumption is based on the close fit of the spatial extension of the core hole states of gold and platinum (Au 4d compared with Pt 4d, etc.).

With regard to the third assumption it can be stated that as a result of the particular deposition method employed (vacuum deposition on a relatively cold substrate) the gold is most probably deposited at random over the available surface sites. In consequence we measure the Madelung surface potential in an averaged way.

It is, however, noteworthy that the fwhm of vacuum-deposited gold on γ -Al₂O₃ is some 0.5 eV higher than that of bulk gold (2.2 and 1.7 eV, respectively). This line broadening could be interpreted as being due to a distribution in surface Madelung potential of γ -Al₂O₃ with a fwhm of about 0.5 eV, and can as such have implications for the interpretation of the "chemical shifts" in platinum.

We therefore expect that the procedure adopted here yields a reasonably approxi-

mate value of the Pt $4d_{i}$ photoline representative Pt^0/γ -Al₂O₃. Using this standard reference, we observe an apparent Pt $4d_{\frac{1}{2}}$ binding energy value of 313.5 eV, which is 1.1 eV below that of hydrogen-treated Pt/Al₂O₃ and 1.6 eV below that of hydrogen-treated Pt,Ge/Al₂O₃. In our opinion these results point to the existence of a "positive," i.e., electron-deficient, form of platinum on γ -Al₂O₃. An alternative explanation, stating that platinum is present on selected sites with an exceptionally high Madelung potential, is not likely because of the relatively small heterogeneity of the surface Madeluug potential on γ -Al₂O₃ as measured with randomly deposited gold. This conclusion, together with the loss of intensity, substantiates the hypothesis that at least a considerable part of the platinum is taken up by the γ -Al₂O₃ matrix.

The situation for the Pt, Ge/Al_2O_3 system is even more interesting. Here, we observe two distinct features:

a. Germanium is found in substantial amounts in the Ge^0/Ge^{2+} state after treatment with hydrogen at 650°C.

b. The Pt $4d_{\frac{1}{2}}$ photoline position, after treatment at 650°C, points to an even more electron-deficient state of platinum in comparison with the Pt/Al₂O₃ catalyst.

It is thus evident that the presence of platinum has two effects on germanium in the Pt,Ge/Al₂O₃ system:

1. It inhibits germanium from becoming "lost" upon severe hydrogen treatment.

2. It catalyzes the reduction of germanium species (compare Fig. 3a with b).

On the other hand, the presence of germanium gives rise to two effects for platinum:

1. Relatively more platinum is kept in exposed sites.

2. Platinum is more electron deficient than in Pt/Al_2O_3 after severe hydrogen treatment.

Consequently, there must be some interaction between platinum and germanium on γ -Al₂O₃.

The question remains: can we define the "chemical environment" of the metal components? When discussing this, we must bear in mind that platinum, when alloyed with germanium $(PtGe_{0,72})$, is clearly electron deficient (see Table 2). This phenomenon, as yet unexplained, can be used as a clue to the detection of alloys in the supported bimetallic system. A close inspection of Table 2 shows that the photoline positions of Pt in the bulk alloy and in Pt,Ge/Al₂O₃ are comparable. Moreover (see Table 3), the chemical shift of the Ge 3d line of the $Pt,Ge/Al_2O_3$ system between the oxidized and reduced state $(\Delta BE = -3.6 \text{ eV})$ is comparable to the shift for Ge in the bulk alloy ($\Delta BE = -$ 4.1 eV) under similar conditions. These values are larger than the corresponding chemical shift between GeO₂ and Ge metal. These observations all suggest the existence of Pt–Ge alloys on γ -alumina. Part of the germanium that is not bound in the alloy is then present in an intermediate positive form (Ge^{2+}).

CONCLUSIONS

1. Platinum as such on γ -Al₂O₃ is present in an electron-deficient state even after hydrogen treatment at 650°C. Similar studies by Ross *et al.* (7) and Escard *et al.* (1) suggest a similar electron-deficient state for supported platinum and iridium.

2. The interaction of platinum with a second component may lead to alloy formation on the support. The experimental evidence obtained for the $Pt,Ge/Al_2O_3$ system at least strongly favors this hypothesis.

3. Germanium, in the absence of platinum, is difficult to reduce. At 650°C it probably becomes soluble in the γ -Al₂O₃ matrix. In the presence of platinum, however, the catalyst probably contains Ge⁴⁺ and Gc^{2+} species, after hydrogen-treatment at 550°C, while after treatment at 650°C it contains Gc^{2+} and Gc^{0} species, the latter being alloyed with platinum.

REFERENCES

- 1. Escard, J., Pontvianne, B., and Contour, J. P., J. Electron Spectrosc. 6, 17 (1975).
- Brinen, J. S., Schmitt, J. L., Doughman, W. R., Achour, P. J., and Siegel, L. A., J. Catal. 40, 295 (1975).

- Biloen, P., and Pott, G. T., J. Catal. 30, 169 (1973).
- 4. Cimino, A., and De Angelis, B. A., J. Catal. 36, 11 (1975).
- Wagner, C. D., and Biloen, P., Surface Sci. 35, 82 (1973).
- Siegbahn, K., Nordling, C., Fahlman, A., Nordberg, R., Hamrin, K., Hedman, J., Johansson, G., Bergmark, T., Karlsson, S., Lindgren, I., and Lindberg, B., "ESCA." Almquist and Wiksells, Uppsala, 1967.
- Ross, P. N., Kinoshita, K., and Stonehart, P., J. Catal. 32, 163 (1974).